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Abstract
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At high intensity of the beam in a synchrotron a purely
imeginary inductive impedance is, at worse, capable of maintaining
sustained coherent oscillations of a bunch. But these can turn
unstable given the presence of any additional impedance with a
positive real part. As a matter of fact, such an impedance can
always be found in the beam environment.

The paper studies thresholds of multipole instability of a
bunch under the assumption that all its oscillational eigen—modes
are completely determined by a dominating low-frequency inductance
of the vacuum chamber. The acceptable value of its impedance
(divided by the mode number) is found to coincide, tho
formally, with the well-known (Boussard) 1local criterion for
stability of microwave oscillations multiplied by the value of
relative inside-the-bunch spread of synchrotron frequencies. The
effect of stationary space charge self-fields is also estimated.

AHHOTaIMA
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llpy ZDOCTATOYHO BHCOKON MHTEHCUBHOCTU IIyYKa B CUHXDOTDOHE YHCTO
MHIYKTUBHHI uMITe IaHC MOXeT IO ANe PHUBATDH TOJIBKO
HeHapacTapillie KOT'epeHTHHe KoJeSaHUs CrycTKa. OFHAKO 3TH KoJeOaHusd
CTAHOBATCA HEYCTOMUMBHMU IIPY HAJNMYUMM JHOOOTO  JOITOJHUTEJLHOT'O
mrefaica ¢ IONOXUTENBHON BelleCTBEHHON YacTeo. OaKTUYECKHM, Tarolt
UMIIe faHC BCeTrZa IPHUCYTCTBYST B OKPYXSHMM IIY4Ka.

B paGoTe MCCJEAYHOTCA IOPOTU  MYJbTHMIIOJBHONR HeyCcTONYUBOCTH
Cr'yCTKa B IPOJIOJOXEHMM, 4YTO BCe €TI0 COOCCTBOHHHE MOJH KoJeCammt
IIOJHOCTE ONPeXeJITCA AOMMHMpybillet HU3KOYACTOTHOR MHAYKTHUBHOCTBHI
BakyyMHON KaMepH . Tlokasawno, 4To ZIOITy C TUMO®E 3HAYEHUE a8
NpUBe ZEHHOTO KMIIeZaHca GOPMAJBHO COBIIAZAST ¢ U3BSCTHHM JIOKAJDHHHM
KpUTepueM YyCTOMUMBOCTA MHMKPOBOJHOBHX KoJeOauuit, yMHOXOHHHM Ha
OTHOCHUTEJIPHHIY Da3CpoC CHMHXPOTPOHHHX YacTOT B NpeleslaXx CI'YCTKa.
OueHeHO BJMAHME CTAUMOHADHHX 3®PEKTOB NMPOCTPAHCTBEHHOTO 3apALa.
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A purely imaginary inductive impedance takes into account local
E.M. fields carried by a beam. Such an impedance 1s unable to
cause the beam instability 1in its ‘"proper" sense, i.e.
exponentially growing oscillations of bunches. At a sufficiently
high beam intensity in a synchrotron this impedance is, at worse,
capable of maintaining sustained coherent oscillations of a bpnch.
But this motion turns unstable in the presence of any retarding
fields (e.g., of resonant cavity fields). Formally, the latter
fields are treated in terms of an Iimpedance with a positive real
par';I.le paper proceeds from the assumption that it 1s precisely the
local type of interaction which dominates in the self-consistent
beam dynamics. Thus, the eflect of retarding fields is reduced to
a small perturbation which, nevertheless, shifts the real
frequency spectrum of the tirst-order approximation to an unstable
domain. Within the frames of such an approach, the explicit nature

fields becomes inessential.
! ;izar:i;:flar problem for the transverse motion was studied

earlier in ret.”"/

1. INTRODUCTIVE REMARKS

Iet ¢ be an azimuth in the co-moving coordinate system.
(Namely, 9 = 6 - wst where 6 1s a generalized azimuth along the
ring, w, 18 the angular velocity of a synchronous particle, t 1s
the time.) Let the origin © =0 of the 9-coordinate frame be



placed on the synchronous particle of the bunch 1in question.
Consider the pair ( ¥;9'= d9/dt ) as canonical variables. The
single-particle Hamiltonlan 1s taken to be

H($,8) = (B U(S) + %2372, (1)

where U(®) 1s the potential energy (or well) of longitudinal
motion, for definiteness U(0) = O; 1, 1s the typical value of the
synchrotron frequency (angular). If U(ﬂ) ~ 9%/2 when ¥ - O, then
the value of Q}, coincides with the synchrotron frequency for small
amplitudes. All the parameters of an equilibrium bunch are
supposed 1o be evaluated with the effect of stationary
(incoherent) space charge self-fields taken into account.

Let us describe the distribution of particles inside a bunch by
a function P(£) where £ is the energy of longltudinal oscillations
which coincides numerically with Hamiltonian (1). Let us impose
the following normalization on F(E€):

® o
r AL !

0,8) 9,

where 8 is the energy of oscillations on the bunch boundary.

The commonly accepted approach to beam instabilities’?/ 1s the
Study of an infinite system of equations in terms of amplitudes
J(Q) of the beam current perturbation harmonics J,(Q)e**?=i0t.

2)

() = B 2 Ve (W (2 (VR )0, ), (3)

R = n+lH, k' n+ZM -0 < 1,1'< o0, R,R# 0.

Here n = 0,...,¥-1 are the indices of the collective modes of beam
oscillations which are discriminated by the value of
bunch-to-bunch phase shift of coherent oscillations (Ap = 2nnsl),
¥ 1s the number of identical and equally spaced bunches in the
beam, Q 1s the coherent frequency in the co-rotating system, Z,(Q)
1s the vacuum chamber impedance.

Eq.(3) embeds the numerical factor R dimensioned as an electric
resistance:

_ 8% (m.c?v) [f]z
el

(4)

where p and y are the Lorentz factors, n = 'r' , a 1s the orbit
compaction factor, (my,C 7) is the total energy of a particle,
J, 18 the beam current averaged along the orblt, :Ap/p, 1s the
Iractional momentum spread on the phase-plane trajectory H &, of
the bunch boundary.

The so-called dispersion integrals Y can be written down as a
series in multipole excitations of the bunch:

[¢]
m
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Here Q_(€) 1s the frequency of incoherent synchrotron osclllations
along the phase-plane trajectory H = £. The quantities

n
Imk(g) 2 _2_11[ J' ezm-cko(e.w)w, (6)

-n
where ¢ is the phase of synchrotron oscillations, can be referred

to as the coefficlents of a series expansion of a plane wave in
the multipole excitations.

2. INTEGRAL EQUATION

The problem under study (namely, the wide-band impedance) can
be treated in a more convenient formulation - In terms of
Lebedev’'s 1integral equation/ 3/ The latter can be constructed by
applying the inverse Fourler transform in {¢-variable to Eq.(3):

e ko _ 7
J,(9,0) =lz_kam) e*®, R =n+Ul. (M)

As a result, one arrives at the following integral equation:
J,(8,Q) =

L -
L Jas, keo.0,.0fan, W 00~ 0,00 00, (B2)
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Integration over ad, o 1s performed within the boundaries of the
single bunch under. study In the kernel K, this integration 1s
carried out over the region &€ > max(U(ﬂ 2)) where both functions
9 (€, 13, o) and ¢(€, ﬁ, o) do exist. For mQ - +0 the _residual 1is
got. around by means or the standard Landau’s prescription. The
Quantity W_ 1s the equation symbol for the inverse Fourler
transform or the reduced impedance Z,(Q)/k, this transform being
performed over the azimuthal harmonics of the n-th mode only:

03]
_ +{k0 _
W.(8,Q) = M'L=Zoo [Zh(n)/k] e , k = n+lM. (80)
From now on, we proceed from the IolloWing cruclal assumption.
Let us suppose that the beam enviromment 1s dominated by the

impedance
Z,(Q)/R = {w, I, (9)

where L 1s the effective "mductance" 0f the vacuum chamber. This
inductance 1s usually presented as a sum of two terms, I = L,+ L,,
see’#'S and some references therein. The first term takes into
account the effect of a perfectly conducting smooth chamber
oL, = ogo
o 3 eﬁvz
where. Z = 120t Ohm 1s the free-space impedance, 8, ~ 1410 18 a
geometrical factor. This component brings about a small
contribution when v >> 7. Another term appears to be more
essential. It 1s a low-frequency inductance L, caused Dby the
vacuum chamber cross-sectlon irregularities. It can be evaluated
experimentally, e.g. by means of potential-well bunch lengthening
or shortening effect. In the existing accelerators with the usual
(non-smoothed) vacuum chambers I, = —(10+30) Ohm’5+8/ The net

inductance I being the sum of two components, 1its value can
possess an arbitrary sign.

(10)
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0f course, the Introduction of the very concept of inductance
L, 1s Justifiable for some band of low frequencles, the relevant
restrictions are touched upon at -the end of Sect.3 of the paper.
On substituting Eq.(9) into Eq.(8c) one gets

tné
Wn('ﬁ,ﬂ) = 27t (:JBL e GZH/M(’G) (11)

where &, ,,(9) 1s a perlodic sequence (with 2n/¥ as a period) of
delta-functions. As a result, Eq.(8a) reduces to the integral
equation with a symmeiric kernel:

(r@) = geo).= - 2 ot J a8, K(9,9,,0) J(3,) (12)
i ¥R 1 i B 17°

As 1t could be expected, here the dependence on n-index
disappears. It 1is by virtue of the locality of interaction (11)
that the relative motion of bunches becomes inessential.

Eq.(12) was first studied in ref.”3/ though synchrotron
frequency spread not being taken into account.

The dispersion equation for coherent osclillations can be
written down in the form of equality:

1 =3,0Q) (13)

where A,(Q) 1is an eigen-value of Eq.(12). On solving Eq.(12) in
terms of Q, one finds the coherent frequency for the relevant
eigen-mode J,(9,Q) of bunch oscillations. The existence of such
solutions with a positive imaginary part of Q 1s an evidence for
the beam instability.

We shall study Eq.(13) by a generalized threshold map
technique. This approach 1s based on a graphic analysis of a
ramily of closed threshold curves C ,(Q) which can be Interpreted
®as images of the straight line Imn - +0 ; - < ReQd <o| subjected
to multiple-valued transform A Q). The whole system is stable
under the condition that all these curves do not cross the
interval (7,») belonging to the real axis of the complex plane A.
In other words, the point 7+i0 should not occur within a region
encircled by any branch of the threshold curve C i(Q).

Consider some general features of these threshold curves. We
begin by writing down an eigen-value A tm) as a quadric functional
in terms of the relevant eigen-function J,(8,Q):
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r@) = 2= § _F (£))|R.(€]J,)]2dE, (14a)
() T 2[0_ (8)[ (€)) IR, (€17 )]
R (E|J) = = J cosmp J[ﬂ(s,cp)]dq) , (14b)
m 2n
j |7, (9)|%a8 = 1.  (14¢)

Let us restrict ourselves to single-peaked distributions F(E),
F'(£) < 0 and monotonous functlons QB(S). First, consider the
mapping of the following segments of the real axis of the complex
plane Q:

Q , - Imd -~ +0 (15)

mi
=] n m' 8 max

where (Q_ ..+ Q, mm) 1s inside-the-bunch band of incoherent
synchrotron frequencies. m’ 1s an integer. One can easily see that
m’ determines the number m = m' for the term of series (14a) which
contains the resonant denominator running through the zero value.
Formally, it presents an evidence for the strong (resonant)
excitation of the bunch oscillations at the m-th multipole on
frequencies Q (15). We shall treat the relevant singularities in
the kernel of Eq.(14a) in a usual way, 1l.e. the principal value
integral plus the residue in the pole. Physically, 1t can be
interpreted as an account of Iandau damping in the bunch. It can
be easily seen that, under assumptions (15), the curves C,(Q) are
entirely running either in the upper, or in the lower half-planes
of the complex plane A:

Imh, # 0,  sign(Im.,) = sign(R L Refd). (16)
Whereof:
(a) Eq.(13) has certainly no solutions at intervals (15). From
a physical viewpoint, this means that the inductive impedance
under study can never excite resonantly the particles which are
rotating along the inner phase-plane trajectories of the bunch.
(b) The curves C,(Q) do not cross the real axils, the only
exception being .for the mapping of some close vicinity of the
point ReQ = 0. The discussion of such a peculiarity of the
threshold curves 1is closely related to the the problem of

6

attainability of the Bunched-Beam Negatlve-Mass Instability
Threshold in view of the simultaneous effect of stationary space
charge self-field introduced by the same 1mpedance/ 3/ We shall not
discuss this question here, the problem being essential for much
higher beam intensities as compared to the ones treated in the
paper.

(¢) On Eq.(15) being violated, the elgen-values xt(n) gain
purely real values. Thus, at sufficiently high beam intensity
Eq.(13) can provide only sustained solutions with real coherent
frequencies 1lying beyond intervals (15). To achieve these
solutions, one should go beyond some threshold intensity value,
this threshold being introduced by Landau damping.

One can easily imagine the general appearance of the threshold
curves C t(Q) (see Fig.1). They are made up of a sequence of closed
loops which run along the axis ImA = O near the origin, and are
closed up in the half-planes (16). The whole picture 1s symmetric

Generalized threshold map

Gtability ™ )

tnelabllity

aao
....
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Fig.1. A sketch of threshold curves.
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with respect to the real axis. Each loop corresponds to. the
excitation of a certaln eigen-mode of the bunch oscillations.
Unstable parameters (l.e. providing ImQ > 0) are located iInside
the reglons encircled by separate loops. These could have
represented physically feasible oscillations, should the r.h.s. of
Eq.(13) have been a complex quantity. Each straight-line segment
of the axis Im\ = O.contalning the real portion of curve C,(Q) can
be interpreted as a cut on the threshold map for mode No."i",
Indeed, any point of this cut 1s Juitaposed to a pair of solutions
of the dispersion equation with ReQ = - Red_,> O.

At sufficiently high beam intensity the point 7+{0 can occur
within the cuts of the threshold map. This shows evidence for a
possibility of non-growing (as t - o) oscillations with a real
coherent shift. That is, a purely'imaginary impedance can never
cause beam instability in its "proper" sense. Nevertheless, this
situation 1In no way means that an arbitrarily high level of the
low-frequency inductance of the vacuum chamber is practically
tolerable.

To prove thils, let us suppose that some additional impedance
characterized by ReZ > O 1s located on the orbit, along with the
impedance of Eq.(9). We do not need its explicit expression.

Suffice 1t to suppose that thls extra impedance is a rather smail

one and, by 1tself, cannot cause any beam instability. The
elgen-modes of bunch oscillations are 8till determined by the
dominant inductance. Nevertheless, the presence of an additional
impedance with ReZ > O changes the qualitative appearance of the
threshold map drastically: the curves C,(Q) are now rotated at a
small angle 8¢ with respect to the coordinate origin. (The value
of 8¢ can be estimated, say, by a perturbation theory.) As a
result, the cuts of the threshold maps are rotated away from the
real axis and the point 7+i0 can occur within the
"proper"-instability region. Therefore, to provide beam stability
one should require the point 7+i{0 to be placed beyond all the cuts
of the initial (for ReZ = 0) threshold maps. In other words,

mazr Reh,( ReQ + 10 ) < 1. “T)
¢ : Imx =0

Thus, the first-order estimates of fhe unknown threshold

parameters require, formally, the evaluation of coordinates of the

©

extreme points of the cuts. Rigorously speaking, the curves Ci(Q)
are asymmetric with respect to the imaginary axls. Therefore, the
instability thresholds would differ for the accelerator operation
regimes either below, or atove transition. (At transition, xi(n)

reverses 1ts sign.)

3. BUNCHES WITH SHALL NONLINEARITY

It 1s this case which presents a major practical interest. Let
80 = Q, (0)- Q_(E,) denote the total inside-the-bunch spread in
synchrotron Irequencies The quantity AQ  can have any sign. For
definiteness, we take AQ, > O which corresponds to the natural
nonlinearity. We shall construct the solution to the elgen-value
problem (12) which is asymptotically correct for AQ_/Q,~ O. We are
looking for the first two terms in the series:

-1
A=a, [59:] Ayt (18)
- Q

Iet us take the advantage of the fact that for AQ Q- O,
ReQ} ~ mﬂ and |m| < Q /AQ a single (resonant) term 1ndexed by m
dominates in series over multipoles in kernel (8b). Thus, the
first term in expansion (18) can be obtained within the frames of
the so-called "uncoupled-multipole" approximation. This means that
the rest terms in the serles over m are truncated. The term q,
takes account of these dropped out nonresonant multipoles.

The potential well U can be written down as a sum of two
contributions: 1) from the externally excited field Urf and
11) from the beam-induced field U,. For relatively short bunches
only the first terms of Taylor expansion of Urf can be retained:

ou
2 3 4 _ 82 b ) 1
U(9) ~ 9°/2 + cz8” + ¢, 07 + U, (%) 9 5?553(0) (19a)

Here, the rightmost term appears because, by the Initial
assumption, the incoherent synchrotron tune-shift 1is already
embedded in the Qz—tactor of Hamiltonian (1). The second-order
quantities proportional to Cs, U Us, are dropped out because of
their small values. As far as the motion in a sinusoidal

9



accelerating field 1is . concerned, the nonlinearity coefficlents
C3,4 acquire the form ' o

= q cote /6, c, = - q°/24, ~ (19b)

where q 1s the RF harmonic number, ¢, 1s the stable phase angle
(cp‘3 > 0 Dbelow transition, synchronous energy gain Dbeing
proportional to cosQ, ).

In the first-order approximation - for a negligibly small beam
current - we take Ub = 0. (The effect of the thus neglected
stationary space charge self-fields 1s studied in Sect.4 of the
paper.) Put c, 4 0 and Q_(£)/, = 1 everywhere except for the
resonant denominator where we take into account the natural
nonlinearity of oscillations:

(€) A0
["sV] g,_[_j £,  (208)
% ., o, %o
AQs 3 2 2 |
[_‘fj « 3 (562 - 20,062 << 1 (20b)
. rf

where A, = (2£,/02)'/2 is the amplitude of oscillations along 4.
The law of motion 1In 1linear approximation 1s 9(&,0) ~
= (26/(25)’/ 2cos¢. ILet us introduce both the reduced energy

8/8 and coordinate z = ﬂ/AﬂO Let us make use of the new
distribution function f(e) = F(€ s) which 1s normalized to unity.
From now on, we require that the derivative f’(e) vanishes at a
sufficiently good pace both at the bunch center and 1ts edge so as
to provide the finite dimensions of the threshold map (i.e., the
finite value of instabllity threshold).

Under such assumptions, solution (18) can be written down as:

A (Q)ﬁ_gogL{[_AEE u(m)+6p("‘)},ReQ~—~m. (21)
s HRao, LLa) . *

On the other hand, the stability criterion of EQ.(17) takes the
form '
™ <1 (22a)

r
for

&

wherea

L TR
o= -2 oo .7_[__7*1] . (22b)
EAER

The parameter h has a simple physical meaning. It coincides, up to
the order of magnitude, with the ratio of coherent synchrotron
tune—s‘litt Q-mid,, (under the assumption of linear oscillations,

= 0) to the natural spread of synchrotron frequencies inside
the bunch. The dimensionless quantity u‘™’ 1s the r-th eigen-value
of the normalized integral equation:

1 ipreNt m (v /T

(m) (m) _ (m) de (23a)
(g,) (z) = r_(e|J*™7) ae,
" I z(s-e*)wys_zz"‘
xT
T
r (el4) = 5 | cosm J[,/""cosq)] ap, €,=00r1 (23p)
-n
where |z} <1, T (Z) = cos(m arccos(z)) 1s a Chebyshev polynomial.

The parameter e determines the relative energy of resonant
particles for which Q,(g,8,) = Revm. Therefore, the elgen-value
Ku(0) > 0 corresponds to the resonant excitation of the bunch
center, while W(7) < O - for that of the bunch edge.

The tfunction J™ can be interpreted as an approximate
elgen-function of Eq.(12) reduced to the segment [-7;71:
J™(z) ~ I, (M8z), ¢ = (m,r), ReQ ~ md . It can be seen that

J™s1) = o, [ i W@ az <o,

-1
J™e-z) = (-1)" J (). (24a)

From now on, we normalize J (’:) (x) as follows:

I ™ ()% dz = 1. (24b)
-1



The elgen-functions of Eq.(23a) determine the set of the so
called radial (with respect to the longitudinal phase-plane) modes
of the m-th order multipole oscillations. They are mutually
orthogonal throughout the cuts of the threshold map (i.e., for
€21, €, 0 ). This Dbecomes self-evident 1f, on changing the
order of integration, one rewrites Eq.(23) in its equivalent form
with a symmetric and real kernel:

1 1 ,
£
u(m)(s*) J(m)(.l‘) - I dr. i™rp ) J‘ |J (e)] (25)
1 (e-€,)

ma:c(x;x,)
r.(z/yE)T (2,//E) ge
nVe-22 g Ve - xf

The Hermitian nature of the above equation allows one to evaluate
the first-order additive correction ©&p induced by multipole
coupling (mixing). Having used the standard perturbation theory,
one gets:

1
e gm2>o[ J-'f’ . ri(elj(’,’,‘)) de] ) (@)
1740

-0 m, #m
{ ol
The summation 1s performed over the multipoles m, > 0 of the same
parity as m. In the first-order approximation, the multipoles of
the opposite parity do not affect each other. This can be
explained by thelr different symmetry properties (24a).
Physically, the term ~ 3y takes into account the effect of
non-resonant excitation of multipoles. Such an excitation cccurs
due to deviation of phase-space perturbation pattern from the
"single-wave" form ~ e'™ %% at frequencies Req =~ ma,_ .
To solve eilgen-value problem (23) by computer, we use the
technique of the direct multiple iterations of the kernel. Such an
approach 1s a quite Justifiable one. Indeed, to estimate the

threshold map cut dimensions one should 1look only for
maximal-by-modulus eigen-values W, A, which are readily provided

12

by the above technique. The discretization of the problem 1s
carried out by means of cublc-spline interpolation of the
tunctions §™(z) and r.(e=b?|f) on an equidistant set of points
in z,b-variables.

lLet us glve an example of an analytic solution which can also
be used for the code-testing computations:

f(e) = g (1-e)%2, e, =1, m=1,

V372 z, |z|<1

0, |zl=

The comparison of the above solution with the computed one 1e
shown in Fig.2. The exact solution 1s drawn by a solld line, while
the computational one - by a dashed line. The computatlons were
carried out on the. equidistant set of 77 points on segnents

m)rqgy. _ 15 (m)rgy. _ 3 (m) _
u’;‘m-——g. & (1)= ppet J (=) {

Testing of computer code

JX)  comp.:  p=-1.8745, Su=-0.18749
anal.: p=-1.8750, &u=-0.18750

/g psa eygx 4 X

Fig.2. Computed and analytic solutlons.
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0 < r,b < 1. Spline nodes are marked by symbol O. The spline value
at r =1 1s calculated via a continuity condition. Here, one
should not make use of the first equality of Eqs.(24a) because the
splined curve camnot provide a proper fitting of a discontinuous
function. Under the condition of & more rapidly falling-off
distributions f(e¢), the relevant elgen-functions would become
continuous on the bunch edges.

For further computations, we take a more realistic distribution
function f(e) made up of two conjugated parabolas:

3 [(1-€)%- a(1-e/a)?, O<e<a,
f(e) = X 2

1-a¢  |(1-e)? , a<e<t!, O<ac<t.
F1g.3 shows the computed values of W, Ou for a = 0.5 and

Im| = 1420, r =1. The quantities wT’(0) and p(1) vary
approximately as +3/|m|, or -4/|m| when |m| > 70. It should be

(27)

Computational results
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Fig.3. Eigen-values and correction terms.
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reminded that w(0) > O corresponds to a resonant excitation of the
bunch center, while W(7) < O - for that of its edge. The dipole
osclllations.appear to be the most dangerous, the relevant picture
of line density perturbation being shown directly in Fig.3. But. a
further increase in beam intensity quickly results in a multipole
mixing. Some higher radial modes of multipole oscillations can as
well be excited. However, we do not show the plots of higher
eigen-values. They would have run nearer to the abscissa axis. Due
to these two effects, the observable picture of bunch line density
perturbation quickly acquires a rather complicated pattern as the
beam 1intensity grows. For (&u(™’| ~ 7, ™) ~ |m|”7,  the
obtained results remain valid up to |m| ~ Q,/MQ . This 1is a
typical 1limitation on the applicabllity range of the
"uncoupled-multipole" approximation, e.g. see’ . v

Fig.4 shows a typical pattern of elgen-function 1(7)(x) - bunch
line density perturbation. As an example, we have taken the mode

Mode |m| = 15, r.=

J . OHE 1;'(

Fig.4. Bunch line density perturbation.
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|m| = 15, r = 1 at the threshold of its excitation. As for other
multipoles, the similar plot differs in the number of 1ts zeros
and, possibly, in the opposite symmetry of j™’(z), see Eq.(24a).
As 1t could be expected, for £, = O the perturbation tends to
bunch center. In going from €, =0 to g, =7, the multipole
content of phase-space perturbation  varies as well.
(Quantitatively, this content 1s characterized by functions
(23b).) To the final extent, 1t explains the difference in the
behavior of correction terms ou"’(0) and 5u(™’(7) observable in
Fig.2.

For the practical purposes threshold criterion (22) can be
replaced by a more severe inequality which ignores the sign of RL:
max|A, .| < 7. On substituting here both Eq.(4) and Eq.(21), one
gets an explicit form of limitation to be imposed on the value
of wI:

W L] = |Z,(Q)/R| <

2ma.x|u("‘)| Qo) s ed , P

[ O] |6P«(m)| << “J‘(m)l

where J,, = Joq/u 1s the bunch current averaged along the RF
period, B = qA%, /% < 1 1s the bunch-factor. The first factor in
the r.h.s. of Eq.(28) equals unity up to the order of its
magnitude which follows from the computational results. The
expression embedded in the braces coincides, though formally, with
the r.h.s.e. of the well-known local criterion for stability of
microwave oscillations’®/ The threshold of multipole oscillations
1s approximately AQ_/Q, times lower.

As an example, let us estimate the maximum tolerable value of
the vacuum chamber low-frequency inductance for the 1-st Stage of
the UNK. Consider a beam circulating at energy m0027 = 600 GeV,
fixed-target operation regime, when J,,= 1.4 A; |n| = 5107%;
bunch-factor B = 0.38; Ap/p, = 6.7°10 ™4, On substituting these
parameters 1into Eq.(28), one gets-wlel < 3.3 Om. (It will be
shown in Sect.4 of the present paper that the effect of stationary
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space charge self-fields somewhat slackens this limitation.)

To estimate the applicabllity range of the results obtalned, we
suppose that the impedance 1s of Eq.(9)-type, 1l.e. L ~ L,, for
beam harmonics |(E|< k,. Usually, a typical frequency R,w, 1s close
to the cut-off frequency of the chamber.

Let us make use of the elgen-function computations (Fig.4). The
Irequenoy spectrum of the bunch line density perturbation for mode
m, =1 1s located near the harmonics of 1its high frequency
modulation R ~ £1.5(|m|+1)/48,. Up to the order of magnitude, this
spectrum has half-bandwidth Ak equal to the inverse half-length of
the modulation envelope, Ak ~ 8/49, where s ~ 3. Therefore,
k, = [1 5(|m|+1) = s]/me (In -this context, 1t would be
Instructive to recall the well-known Radio—Engineering analogy -
effect of the Ifrequency translation of a video-pulse spectrum to a
high frequency domaln after multiplication of the video—pulse by a
high frequency harmonic signal.) Thus, the results obtained are
valid up to |kb|< k, which 1s equivalent to :

5 [|m|+s’] 5 kA0, 8~ 3.

Here we neglect the higher radial modes. Practically, they exhibit
sufficliently higher thresholds of excitation.
Let us continue with the example of the 1-st Stage of the UNK.
Its vacuum chamber 1s d = 7 cm, revolution frequency 1s w, /2 =
= 14.4 KHz and the ultimate harmonic 1s R~ 2, 3 10°. Thus,
imji< 10. ‘

4. THE EFFECT OF STATIONARY SPACE CHARGE SELP-FIELDS

From the formal viewpoint, this effect 1s described by terms of
Eq.(19a) proportional to U,, these terms being truncated in the
above treatment. The theory 0of the question 1s rairly well
developed /9/ As far as the problem under study is concerned, one
can 1ignore the variation of the equilibrium bunch parameters
(Aﬂb,Ap) caused by beam-induced field because
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oA, OAp 0l 4
A%, Ap 2HR A%,
2w _L AQ
s_ 1 [—j «< 1.
¥R AS. QJd_ .
|threshold

However, the relevant beam-induced modification of synchrotron
nonlinearity exhibits itself as a more essential thing, its effect
being determined by the ratio of the small parameters of the

problem:
REE
| . [_j
R A9, N

Moreover, these corrections are introduced directly intc the
resonant denominator Iin the Kernel of integral Eq.(23a) which
enhances thelr effect drastically.

In the case of impedance (9), the beam-induced potential U, has
a simple form:

threshold

on J,, w I N($)-N(O)
U.(9) = S ok , U.(0)=0
b v, , SIng_ [ N(8)ds b(%) i

where V P 1s the accelerating voltage amplitude per turn, N(®) is
the bunch line density. Up to the effects of the first order in

Ub, cne gets the following incoherent shift of the synchrotron
frequency:
3
%
a, . O, 00V (£,9)%

x

x [[U (AE0)) - (& p)—p- ")(0)] (9 = 0) ] a

where €(&,¢=0) = max, ((€,¢)). The r.h.s. of the above Eq. contains
the functions 9(€, cp), ¢ (€,¢) and Q_(€) which are determined in a
zero—-order  approximation. Naturally, one prefers linear
oscillations to construct this initial approximation. Further on,
we again replace variables (€,8) by a pair of the reduced ones
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(¢,z). We also employ the line density function n(z) = N(A® oF)
which 1s reduced to segment [-7;7] and normalized to unity. In
such notations, Egs.(29), (30) can be comblned to yield:

[Y_l_e_w]g-g_(’)_efi_x 31
Q, . HR AS,

. 1:/2 -
1 on 2, _0n 11 .
[ 202 " J; s a(zz)['/e—s ‘) dm]

We shall continue to use the distribution function of Eq.(27). One
can easily find out that the relevant line density n(z) can be
written as:

, 0<2%< a

a<z’<1.
(32)

The contribution from the natural nonlinearity 1s given by
Eq.(20a). Therefore, on substituting n(z) Irom Eq. (32) 1into
Eq.(31), one immediately arrives at the net nonlinearity law:

0)- Q AQ
[ns( ) 8(8)] = [—-—j x [8 +h G(G.a)]s (33a)
Q Q). -

(o] »f+b b

n(x)=

=1 - - 4=
G(e,a) = L | g(e) - yTa(e/a) - 7(1- /T ]

The parameter h is defined quantitatively by Eq.(22b). But here
this parameter acquires a somewhat different qualitative
interpretation. This time, up to a factor of the order of (-2), 1t
is the ratlo of small-amplitude incoherent synchrotron tune-shift
[QO(JO=O) - QO(JO=O) to the natural inside-the-bunch spread of
synchrotron frequencies. (Thus, as 1s well known, for the
impedance of Eq.(9) both incoherent and coherent synchrotron
tune-shifts practically coincide by their absolute values while
having the dpposite signs.) Function g(e) can be reduced to a
quadrature via elliptic integrals. Nevertheless, computationally
it 18 more convenient to retain its explicit integral
representation:
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¢ 3/2
ge) = (16/%2)J stn? [1-¢ sin?p)” do, (33¢)
o] .
, e, €1
¢ { arcsin(1//€7), € > 1.

Now, one can easily modify Eq. (22a) to account for the leading
stationary self-field effect. As a result, the stability criterion
becomes a nonlinear function of variable h:

hp™ (e, |h)

(34a)
1+ h G(1,a)
for
AQ
S [_E |h ou™ (e, 1h)]. (34b)
|1 + nh G(1,a)] N "

The quantity p(™’(e,|h) 1s an eigen-value of an integral equation
which differs from Eq.(23a) in the expression for 1ts resonant
denominator: (e - g,)+(w(e) - €,), where w(e) can be referred to
as a normalized nonlinearity law of synchrotron oscillations:
€ + h G(g,a)
WE) = —————0nun , W0) = 0. w1 =1. (35)
7+ h G(1,a)

The estimates show that up to the near-threshold values [l 2 1
the w(e)-function varies monotonously within the range
0 <w(e) <7. Thus, the solution for the relevant eigen-value
problem can be easily obtained by computer via the same above
mentioned technique.

F1g.5 shows the plot of the r.h.s. of Eq.(34a) versus parameter
h for [m| =1, a=0.5. Two tangent lines present the analogous
dependence resulting from the first-order approximation, i.e. from
Eq. (22a). The dashed 1lines show the plots of the
"hou(1’(e,|h)"- function which allow an easy verification of
inequality (34b). It can be seen that the effect of stationary
space charge self-fields widens the region of stable parameters by
a factor of 2.0 for h < 0, or by 1.4 tor h > O.

This change 1in ‘the threshold 1s caused by a stationary
distortion of distribution of particles over the incoherent
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synchrotron frequencies. It can be explained by a competition of

the following two factors.
Mode (m| =1, r =1

B IS NIRIR U AR IR W AT N NI E AR I I SY AN AR SVEN BN N AN
J ' nstability "
. exe0 ;
1.0 s I -
i 3 N
i i C
0.5 " =
3 Wb .
— 1 [’ -
0.0 1 b T
-0.5 . e gx=0 E_
-1.0 -
] n
—1.5—_T_rlllillll_~r1llllIllllllllllllgflw:‘[

—115 -110 -0-5 0-0 . 015 1-0 115
Fig.5. Effect of stationafy self-fields.

On the one hand, the total spread (AQ_/Q,). 7eb decreases for
h > O (destabilizing effect), and, otherwise, increases for h < O
(stabilization).

On the other hand, the relative number of particles with their
synchrotron frequencies lying close to the resonant value
decreases irrespective of the sign of h. Formally, this effect
manifests itself in

R (e0l0) WPt

—_ <1, —_— . )

k™ (e =0|h=0) - wM™(e=1|n=0) e
Such a behavior of the elgen-values 1s caused by the decre‘asing
value of the resonant factor (w(e) - e*)" as compared to the

natural nonlinearity when w(e¢) = €. Indeed, for all & from the
range 0 < € £ 1
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w(e) > € when h > 0, €, )
w(e) <& when h <0, g, =1,

which can be confirmed computationally. The second of the above
factors always tends to widen the region of the stable parameters.
It has a more significant effect as compared to the beam-induced
varlation of the total synchrotron spread. A similar picture 1s
observed for other distributions (a # 0.5), see Appendix.
Therefore, the acceptable value of the low-frequency inductance
of the vacuum chamber for the 1-st Stage of the UNK, contrary to
that cited after Eq.(28), can be ralsed as high as
W, L] < 4.7 Ohm. For the 2-nd Stage this value varies

approximately proportionally to y~>/4
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APPENDIX

Variation of the free parameter g of the functions in Egs. (27),
(32) and (33) allows one to simulate a rather wide collection of
realistic distributions. However, 1in doing this, as well as 1n
attempting to analyze the higher multipoles, one encounters some
technical problems. These are caused by non-monotonous behavior of
functions Q (&) = Q, . hb(é‘) and w(e) at the near-threshold values
of h.
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Formally, the effect of the non-monotonous nonlinearity Q (€)
can be coped with by treating O, as a new independent variable.
€ - Q_(€), and. by introducing F' (Q )= 2 [F' |dQ /d£|”](6‘(ﬂ )) as
a new distribution function In the interval (Q_ ..+ Q. .27
Hére, the summation 1s performed over the regions of
Qs(e)— monotonicity where the single-valued function €& = S(Qs)
does exist.

Analysis of Egs.(14) shows tpat now the generalized threshold
curve can run to infinity, |ReA, o |ImA, | > o, It would take place
in the points of resonant (Q = mQ (€)) excitation of the particles
which are moving along inner (F’ (Q ) # 0) phase-plane trajectories
with locally - extreme values of synchrotron Irequencies
(Q.(€) = 0).

Nevertheless, as far as the purely imaginary inductive
impedance 1s concerned, this "blow-up" of the threshold dlagram
occurs in its inessential part and should not be interpreted as a
loss of stabillity of the system. Suffice 1t to mentlon the
following consideration.

For h > O the finite value of lnstability threshold (1f there
is any) corresponds to resonant excitation of particles at
phase-plane trajectory withQ =0Q__ ~ on the necessary condition
of F (Q‘3 mm) = 0. (Respectively, for h < O — on the trajectory
with Q_ = Q, nin When FQ, nin = 0.) However, calculations by
computer of Eqs.(33) and (35) show that for a wlde range of the
h-parameter values (up to the threshold of octupole oscillations)
these requirements are still met on the resonant phase-plane
trajectories of the zero-order (in h-parameter) approximation.
Namely, either at ¢, = O for h > O, or at €, = 1 for h < O.

Therefore, the account of stationary self-fleld effects for
different values of a and lower multipoles, |m]| s 4, can well be
considered without any modifications to the computational
technique. Naturally, 1n the process of these computations the net
nonlinearity law Q J.M(&) should be controlled. Results for
dipole and quadrupole oscillations are listed in Tables 1,2.
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Table . Threshold values of parameter h (im| = 1).

h <0, g,=1 h>0, g0
Account of
stationary yes no no yes
effects
a = 0.1 -0.92 -0.72 0.19 0.28
0.2 -1.23 -0.72 0.31 0.44
0.3 -1.35 -0.71 0.42 0.59
0.4 -1.36 -0.69 0.54 0.76
0.5 -1.30 -0.67 0.67 0.94
0.6 -1.19 -0.63 0.81 1.13
0.7 -1.04 -0.57 0.95 1.33
0.8 -0.85 -0.50 1.11 ~1.55
0.9 -0.60 -0.39 1.27 1.78
Table 2. Threshold values of parameter & (|m| = 2).
h <0, g=1 h >0, g=0
Account of
:g?:gggary yes no no yes
a = 0.1 -1.45 -1.07 0.30 0.52
0.2 -2.47 -1.05 0.47 0.78
0.3 -3.00 -1.02 0.64 7.04
0.4 -3.08 -0.97 0.82 1.31
0.5 -2.82 . -0.92 1.01 1.60
0.6 -2.40 -0.85 1.21 1,91
0.7 -1.92 -0.76 1.43 2.25
0.8 -1.41 -0.65 1.65 2.61
0.9 -0.91 -0.49 1.90 3.00
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